德必信生活网

您现在的位置是:首页 > 生活资讯 > 正文

生活资讯

带通滤波器原理(带通滤波器原理图)

阿信2023-04-10生活资讯62

本篇文章给大家谈谈带通滤波器原理,以及带通滤波器原理图对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

信号滤波器原理是什么?

一、滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。

广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。

本节所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。 

二、滤波器分类

1、根据滤波器的选频作用分类

⑴ 低通滤波器

从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

⑵ 高通滤波器

与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

⑶ 带通滤波器

它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

⑷ 带阻滤波器

与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过.

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

⒉ 根据“最佳逼近特性”标准分类

⑴ 巴特沃斯滤波器

从幅频特性提出要求,而不考虑相频特性。巴特沃斯滤波器具有最大平坦幅度特性,其幅频响应表达式为:

⑵ 切比雪夫滤波器

切贝雪夫滤波器也是从幅频特性方面提出逼近要求的,其幅频响应表达式为:ε是决定通带波纹大小的系数,波纹的产生是由于实际滤波网络中含有电抗元件;Tn是第一类切贝雪夫多项式。

与巴特沃斯逼近特性相比较,这种特性虽然在通带内有起伏,但对同样的n值在进入阻带以后衰减更陡峭,更接近理想情况。ε值越小,通带起伏越小,截止频率点衰减的分贝值也越小,但进入阻带后衰减特性变化缓慢。切贝雪夫滤波器与巴特沃斯滤波器进行比较,切贝雪夫滤波器的通带有波纹,过渡带轻陡直,因此,在不允许通带内有纹波的情况下,巴特沃斯型更可取;从相频响应来看,巴特沃斯型要优于切贝雪夫型,通过上面二图比较可以看出,前者的相频响应更接近于直线。

⑶ 贝塞尔滤波器

只满足相频特性而不关心幅频特性。贝塞尔滤波器又称最平时延或恒时延滤波器。其相移和频率成正比,即为一线性关系。但是由于它的幅频特性欠佳,而往往限制了它的应用。

三、理想滤波器

理想滤波器是指能使通带内信号的幅值和相位都不失真,阻带内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。也就是说,理想滤波器在通带内的幅频特性应为常数,相频特性的斜率为常值;在通带外的幅频特性应为零。

理想低通滤波器的频率响应函数为:其幅频及相频特性曲线为:分析上式所表示的频率特性可知,该滤波器在时域内的脉冲响应函数 h(t)为 sinc函数,图形如下图所示。脉冲响应的波形沿横坐标左、右无限延伸,从图中可以看出,在t=0时刻单位脉冲输入滤波器之前,即在t0时,滤波器就已经有响应了。显然,这是一种非因果关系,在物理上是不能实现的。这说明在截止频率处呈现直角锐变的幅频特性,或者说在频域内用矩形窗函数描述的理想滤波器是不可能存在的。实际滤波器的频域图形不会在某个频率上完全截止,而会逐渐衰减并延伸到∞。

四、实际滤波器

⒈ 实际滤波器的基本参数

理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。

如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。

⑴ 纹波幅度d

在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。

⑵ 截止频率fc

幅频特性值等于0.707A0所对应的频率称为滤波器的截止频率。以A0为参考值,0.707A0对应于-3dB点,即相对于A0衰减3dB。若以信号的幅值平方表示信号功率,则所对应的点正好是半功率点

⑶ 带宽B和品质因数Q值

上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0( )和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。

⑷ 倍频程选择性W

在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带的幅频曲线倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。

⑸ 滤波器因数(或矩形系数)

滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性,记作 ,即理想滤波器 =1,常用滤波器 =1-5,显然, 越接近于1,滤波器选择性越好。

相关滤波器的基本原理是什么?

滤波器原理是当流过电感的电流变化时,电感线圈中产生的感应电动势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。

滤波器是由电容、电感和电阻组成的滤波电路。滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。

拓展资料

按所处理的信号分为模拟滤波器和数字滤波器两种。

按所通过信号的频段分为低通、高通、带通、带阻和全通滤波器五种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声;

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量;

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声;

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过,又称为陷波滤波器。

全通滤波器:全通滤波器是指在全频带范围内,信号的幅值不会改变,也就是全频带内幅值增益恒等于1。一般全通滤波器用于移相,也就是说,对输入信号的相位进行改变,理想情况是相移与频率成正比,相当于一个时间延时系统。

按所采用的元器件分为无源和有源滤波器两种。

根据滤波器的安放位置不同,一般分为板上滤波器和面板滤波器。

板上滤波器安装在线路板上,如PLB、JLB系列滤波器。这种滤波器的优点是经济,缺点是高频滤波效果欠佳。其主要原因是:

1、滤波器的输入与输出之间没有隔离,容易发生耦合;

2、滤波器的接地阻抗不是很低,削弱了高频旁路效果;

3、滤波器与机箱之间的一段连线会产生两种不良作用: 一个是机箱内部空间的电磁干扰会直接感应到这段线上,沿着电缆传出机箱,借助电缆辐射,使滤波器失效;另一个是外界干扰在被板上滤波器滤波之前,借助这段线产生辐射,或直接与线路板上的电路发生耦合,造成敏感度问题;

滤波阵列板、滤波连接器等面板滤波器一般都直接安装在屏蔽机箱的金属面板上。由于直接安装在金属面板上,滤波器的输入与输出之间完全隔离,接地良好,电缆上的干扰在机箱端口上被滤除,因此滤波效果相当理想。

求无源带通滤波器电路,有源带通滤波器原理??

无源带通滤波器电路,有源带通滤波器原理图2009-03-03

00:57

1.滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通

常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。这些网

络可以由RLC

元件或RC

元件构成的无源滤波器,也可由RC

元件和有源器件构成的有源

滤波器。

根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器

(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。图4-1

别为四种滤波器的实际幅频特性的示意图。

图4-1

四种滤波器的幅频特性

2.四种滤波器的传递函数和实验模拟电路如图4-2

所示:(a)无源低通滤波器

(b)有源低通滤波器

(c)

无源高通滤波器

(d)有源高通滤波器

(e)无源带通滤波器

(f)有源带通滤波器

(g)无源带阻滤波器

(h)有源带阻滤波器

图4-2

四种滤波器的实验电路

3.滤波器的网络函数H(jω),又称为正弦传递函数,它可用下式表示

式中A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。它们均可通过实验的方

低通,高通,带通,带阻滤波器的定义 急

1、低通:(Low-pass filter)是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。

2、高通:是一种让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。其特性在时域及频域中可分别用冲激响应及频率响应描述。

3、带通:是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。

4、带阻滤波器:是指能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通滤波器的概念相对。其中点阻滤波器(notch filter)是一种特殊的带阻滤波器,它的阻带范围极小,有着很高的Q值(Q Factor)。

将输入电压同时作用于低通滤波器和高通滤波器,再将两个电路的输出电压求和,就可以得到带阻滤波器,如下图所示。其中低通滤波器的截止频率 应小于高通滤波器的截止频率 ,因此,电路的阻带为( - )。

扩展资料

低通原理利用:

1、巴特沃斯滤波器

巴特沃斯滤波器是滤波器的一种设计分类,其采用的是巴特沃斯传递函数,有高通、低通、带通、带阻等多种滤波器类型。巴特沃斯滤波器在通频带内外都有平稳的幅频特性,但有较长的过渡带,在过渡带上很容易造成失真。

2、切比雪夫滤波器

切比雪夫滤波器是滤波器的一种设计分类,其采用的是切比雪夫传递函数,也有高通、低通、带通、高阻、带阻等多种滤波器类型。同巴特沃斯滤波器相比,切比雪夫滤波器的过渡带很窄,但内部的幅频特性却很不稳定。

高通种类:

1、按照所采用的器件不同分类有源高通滤波器、无源高通滤波器。

无源高通滤波器: 仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。

这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

有源高通滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小。

利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

2、按照滤波器的数学特性分为一阶高通滤波器、二阶高通滤波器等。

滤波器原理 滤波器原理是什么

1、低通滤波器从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。

2、高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。

3、带通滤波器它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。

4、带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。

5、低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

带通滤波器原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于带通滤波器原理图、带通滤波器原理的信息别忘了在本站进行查找喔。