德必信生活网

您现在的位置是:首页 > 生活资讯 > 正文

生活资讯

制冷技术(制冷技术课后题答案)

阿信2023-04-11生活资讯64

本篇文章给大家谈谈制冷技术,以及制冷技术课后题答案对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

空调制冷技术详细介绍

空调制冷技术是什么呢?空调是现在使用比较多的一种家用电器,在家里和商场都有使用这种电器。那么大家对于空调制冷技术的了解有多少呢?空调是怎么样进行制冷的呢?空调的制冷技术是怎样的呢?空调使用的是氟利昂,相信很多人都是知道这一点的。我们今天来认识一下什么是空调制冷技术,下面,小编为大家带来空调制冷技术的介绍。

一、空调简介

空气调节器,与过去的制冷空调有了很大的区别了!现代的空调主要参数有:对温度的控制,对气流流速的控制,对空气湿度的调节,以及空气质量的洁净度的设置。其他的参数有:空调的噪音,能耗比,外观等。

二、制冷技术之一压缩制冷技术

物质是能量交换的载体,而这里的的物质就是制冷剂,空调实际上也是一个热循环交换系统。在这个系统中有:蒸发器———》压缩机——》》冷凝器——》》节流管(减压器)等主要器件。首先,压缩机吸气,此时制冷剂(此时的制冷剂是气体,从蒸发器过来的)从进气阀门进入压缩机,然后阀门关闭压缩机压缩气体使之成为高压气体(注意:高压气体容易向外排放热量)。

当压力达到一定程度后,排气阀门会打开让高压气体通过冷凝器,冷凝器的作用就是使高压气体向外排热(此时能量向外转移了),高压气体经过冷凝器后就会变成液体,因为这一过程是在一个封闭的空间内,所以此时的液体还保持一定的压力,因此要对液体进行减压(为什么要减压呢?原因是:只有当液体压力低于外界压力时,液体才会更容易沸腾即吸收热量),所以要让液体经过节流器(减压器)。

此后减压的液体会再次经过蒸发器对内吸收热量(带走房间内的能量)再变成气体,接着气体又会进入压缩机,就这样一直循环下去,在这一过程实现了内外的能量交换。

三、制冷剂的命名

一般以R开头,R7****无机化合物制冷剂,如:乙醚,氨等,由于氨是有害气体所以一般只用于大型的冷库进行间接制冷(工作场所,家庭,餐厅等一般不用)。

现代发展起来主要有氟利昂系列(以HCFCF**,CFC***,HC**开头),这主要是因为氟利昂系列的制冷剂在单位体积内冷却功率高,能量转换效率高,但由于氟利昂系列产品对地球的臭氧层有害!因此现在各国政府都在逐渐禁止氟利昂系列产品,新的制冷剂正在探索研究中。

以上,就是空调制冷技术介绍。空调主要是使用一些可以吸收热气的气体进行运作的,最常见的制冷的气体就是氟利昂,大多数人会将这种气体叫做雪种。任何的制冷设备里面都是有制冷剂,而且使用的制冷技术都是不一样的。我们选择空调的时候最好是看看制冷的技术是怎样的,因为不同制冷技术的空调设备使用的电能消耗是不一样的,要注意。

制冷技术分类

分类如下:

1,依原理可分,物理,化学方式。

化学在生活中,医疗上都有见。如医用冰袋,冰激凌的制作上。

物理方式上由于原理不同,又可分蒸汽压缩式,半导体,辐射,等。生活中半导体也比较常见。车用冰箱,饮水机等。我们遇见最多的是蒸汽压缩式。

依压缩机,蒸发器类型,蒸发器供液方式,冷凝方式,节流装置,制冷剂种类,又可分多钟类型。当然根据控制方式还可分几类。

我们最常用的是活塞压缩机,直接供液,膨胀阀节流,风冷冷凝,冷风机,氟利昂类的制冷系统。

2,依制冷温度(工况)分空调,冷冻(冷藏)。再可依温度,用途,结构特点等分许多类。

我们接触多的空调类是家用分体空调,单位常用为空气源热泵风冷空调系统。

冷冻类的,是冰箱,与拼装冷冻库。

3,依供冷方式分直接与间接。家用空调,冰箱,小型拼装冷库多数是直接供冷方式。大型中央空调,制冰就是间接供冷。制冷机先冷却水,水再冷却需冷物体。

4,依使用场合食品,化工,医药,航空,航天等。由于各自服务的对象不同,对制冷系统的要求也各不相同,每个行业要求也不相同,就食品存储,海鲜,半成品温度要求就比牛羊肉低,水果与素菜的存储工况就不一样。

原理:

所有的声波制冷的工作原理都基于所谓的热声效应,热声效应机理可以简单的描述为在声波稠密时加入热量,在声波稀疏时排出热量,则声波得到加强;反之声波稠密时排出热量,在声波稀疏时吸人热量,则声波得到削弱。

当然,实际的热声理论远比这复杂的多,热声制冷的设计水平及制造工艺也在不断的提高。

制冷技术及其应用知识点

1基本制冷系统概述

为了学习基本制冷系统,我们可以将其简化为一个简单的系统,如下:

现在,我们将上述简单系统中的部件换成实际部件:一台压缩机、一个冷凝器、一个毛细管和一个蒸发器。如下图,这就接近于真实的制冷系统了。

2制冷系统—膨胀阀

热力膨胀阀能控制液态制冷剂从冷凝器注入蒸发器。

膨胀阀能让蒸发器出口处的过热度保持在一定水平, 防止液态制冷剂离开蒸发器进入压缩机。一旦液态制冷剂进入压缩机,便会发生液击。必须防止这种状况 发生,以免压缩机损坏。

Pb-感温包压力

Pe-蒸发压力

Ps-弹簧压力

Pb = Ps+Pe, 膜片不移动。

当感温包压力上升,导致 Pb Ps+Pe 时,膜片向下移动,阀门打开,更多制冷剂流入蒸发器。

当感温包压力下降,导致 Pb Ps+Pe 时,膜片向上移动,阀门关闭,流入蒸发器的制冷剂减少。

3制冷系统—储液器

在高压条件下,压缩后的制冷剂蒸气在冷凝器中凝结为液体制冷剂。离开冷凝器后,液体流经储液器。

储液器主要有两个功能。

1、储液器对负荷变化造成的冷凝器液位变化进行补偿。

当膨胀阀打开/关闭时,冷凝器的液位会发生改变,若储液器中没有“额外”的制冷剂,膨胀阀前端的液体量就可能不足,致使膨胀阀无法正常工作,造成整个系统变得不稳定。

2、储液器还作为一个额外的容器,帮助液态制冷剂与制冷剂蒸气分离,确保离开储液器的是纯液态制冷剂。

4制冷系统—电磁阀

电磁阀是一种利用电磁力的阀门。

它是一种开/关阀,根据通断电情况控制制冷剂的流动。

电磁阀大致可分为两类。

直动式电磁阀 – 阀线圈通电时,电磁阀直接打开/关闭阀口。

伺服式电磁阀 – 通电或断电时,阀门打开引导阀口,让主阀口根据膜片/活塞的压差逐渐开(取决于阀门是 NC 还是 NO),

这两种电磁阀又各自分为:

NC(常闭型)——不通电时限制制冷剂流动(平常关闭),

阀线圈通电时允许制冷剂流动。

NO(常开型)——不通电时允许制冷剂流动(平常打开),

阀线圈通电时限制制冷剂流动。

工作原理

冷藏室温度上升时,感温包压力上升到设定值,电源端子1 和4 接通,从而打开电磁阀,允许制冷剂流入蒸发器。温度下降时,感温包内的压力下降到设定值。端子1 和4 断开,子1 和2 接通。电磁阀断电并关闭,因而限制制冷剂流向蒸发器,使冷藏室温度上升。

5制冷系统—压力控制器

若电磁阀阻止制冷剂流向蒸发器,而压缩机仍在运转,这时会发生什么情况?进气压力下降。为此我们需要停止压缩机,以便控 制系统压力,防止进气压力降到标定压力之下。

此外,若由于冷凝器太脏或风扇故障导致冷凝压力升得过高,也必须停止压缩机, 以防压缩机超出工作范围。

原理以及功能

压力控制器能防止进气压力(蒸发器压力)过低或排气压力(冷 凝器压力)过高,以此控制和保护系统。

压力控制器主要有两个功能:

1、保护(或安全)功能:限制压力,系统压力过低或过高时切断电源。

2、控制功能:压缩机循环、风扇循环和排空。

常见的压力控制器有两种:

单压控制器:分为低压控制器和高压控制器。

2、双压控制器: 一个控制器兼具低压控制和高压控制。

压缩机高低压保护

压缩机常常需要保护,以防止冷凝压力过高或者进气压力过低。

实现的方法是使用两个单压开关或者一个双压开关。开关有多种 电气接触类型。这里看到的是一个简单的类型。高压和低压开关组合在一个壳体内。

两个球体作用于两者之间的装置。若压力达 到“高”设定值,开关将打开触点A 和C。若压力落到“低”设定值以下,开关也会打开触点A 和C。

什么是真空制冷技术

真空制冷是有特定条件的一种快速制冷方式。首先,被冷却物料中必须在常温条件下,含有可蒸(挥)发的可凝性气体成分,比如,水,酒精等溶剂,甚至是水银等。当被冷却物料在密闭的容器中的空间环境压力达到一定值时,被冷却物料中的可凝性气体成分就会突然膨胀而蒸发,而蒸发的同时带走了被冷却物料中的潜热,而在系统末端的真空泵抽成空形成的压差,所蒸发的可凝性气体被源源不断送出系统之外,从而被冷却物料即被不断地降低温度。真空制冷节能的成因:水在相态不变的情况下,1kg水温度升高1℃所吸收的热量Q1=c·m·Δt=4.186×1×1=4.186Kj=1Kcal,而真空制冷物料中的水分发生相态的变化,水变成水蒸气,此时的水要吸收蒸发潜热。水在相态发生的情况下,如1kg水在38℃发生汽化所吸收的蒸发潜热为575.7(Kcal/Kg),则:Q2=m·r=1×575.7 Kcal/Kg=575.7 Kcal,可见比较Q2/ Q1=575.7 Kcal /1Kcal =575.7倍。这就是告诉人们:水发生汽化时吸收的热量是水在液态下升高1℃时所吸收热量的近600倍。所以相对其它物料冷却方法作比较,真空制冷是能够在较短时间内实现急速降温的制冷方式。据报道,江苏洽爱纳机械有限公司2014年有专利产品,为冷却熟化后的豌豆(96℃)真空冷冻到-25℃,每次冷冻2kg仅仅需要用时18秒即可。

真空制冷系统中的制冷压缩机的使用,并不是真空制冷过程所必须的装置。 真空制冷过程中,比如当被冷却物料中的水为20℃时降低到19℃,一滴的体积将被膨胀到原体积约320万倍体积低压水蒸汽,这么多体积如果完全靠真空泵排出系统之外,则真空制冷系统就需要一个非常庞大的真空动力设备。所以,人们起先在真空制冷系统中设置了一个低温的冷阱,俗称“捕水器”,就可把大量的低压水蒸汽拦截成冷凝水或冰晶体,也就大大减轻了真空泵的负荷。然技术革新不断更新的今天,又有了高分子树脂阱,从而,就抛弃了需要消耗电力的由制冷压缩机提供冷量的低温冷阱,所以说,制冷压缩机不是真空制冷过程所必须的装备。

我担心“hanjisebei"的回答,可能会带偏大家对真空制冷的认识, 所以就补充几句。欢迎诸位批评指正,谢谢!

制冷技术的发展史

gspw/Doc/data.WebNoteBooks/20060919183625/10554161561771518995126061722013579.pdf

现代的制冷技术,是18世纪后期发展起来的。

在此之前,人们很早已懂得冷的利用。

我国古代就有人用天然冰冷藏食品和防暑降温。

马可·波罗在他的著作《马可·波罗游记》中,对中国制冷和造冰窖的方法有详细的记述。

1755年爱丁堡的化学教师库仑利用乙醚蒸发使水结冰。

他的学生布拉克从本质上解释了融化和气化现象,提出了潜热的概念,并发明了冰量热器,标志着现代制冷技术的开始。

在普冷方面,1834年发明家波尔金斯造出了第一台以乙醚为工质的蒸气压缩式制冷机,并正式申请了英国第6662号专利。

这是后来所有蒸气压缩式制冷机的雏型,但使用的工质是乙醚,容易燃烧。

到1875年卡利和林德用氨作制冷剂,从此蒸气压缩式制冷机开始占有统治地位。

在此期间,空气绝热膨胀会显著降低空气温度的现象开始用于制冷。

1844年,医生高里用封闭循环的空气制冷机为患者建立了一座空调站,空气制冷机使他一举成名。

威廉·西门斯在空气制冷机中引入了回热器,提高了制冷机的性能。

1859年,卡列发明了氨水吸收式制冷系统,申请了原理专利。

1910年左右,马利斯·莱兰克发明了蒸气喷射式制冷系统。

到20世纪,制冷技术有了更大发展。

全封闭制冷压缩机的研制成功(美国通用电器公司);米里杰发现氟里昂制冷剂并用于蒸气压缩式制冷循环以及混合制冷剂的应用;伯宁顿发明回热式除湿器循环以及热泵的出现,均推动了制冷技术的发展。

在低温方面,1877年卡里捷液化了氧气;1895年林德液化了空气,建立了空气分离设备;1898年杜瓦用液态空气预冷氢气,然后用绝热节流使氢气成为液体,温度降至20.4K;1908年卡末林·昂纳斯用液态空气和液态氢预冷氦气,再用绝热节流将氦液化,获得4.2K的低温。

杜瓦于1892年发明的杜瓦瓶,用于贮存低温液体,为低温领域的研究提供了重要条件。

1934年,卡皮查发明了先用膨胀机将氦气降温,再用绝热节流使其液化的氦液化器;1947年柯林斯采用双膨胀机于氦的预冷。

大部分的氦液化器现已采用膨胀机,在制冷技术的开发和实际使用中获得广泛的应用。

新的降低温度方法的发明,扩大了低温的范围,并进入了超低温领域。

德拜和焦克分别在1926年和1927年提出了用顺磁盐绝热退磁的方法获取低温,应用此方法获得的低温现已达到(1×10-3~5×10-3)K;由库提和西蒙等提出的核子绝热去磁的方法可将温度降至更低,库提用此法于1956年获得了20×10-3K。

1951年伦敦提出并于1965年研制出的3He-4He混合液稀释制冷法,可达到4×10-3K;1950年泡墨朗切克提出的方法,利用压缩液态3He的绝热固化,达到1×10-3K。

更近期的制冷技术发展主要缘于世界范围内对食品、舒适和健康方面,以及在空间技术、国防建设和科学实验方面的需要,从而使这门技术在20世纪的后半期得到飞速发展。

受微电子、计算机、新型原材料和其它相关工业领域的技术进步的渗透和促进,制冷技术取得了一些突破性的进展,同时也面临一场新的挑战。

突破性的进展在于:

(1)微电子和计算机技术的应用

“机电一体化”浪潮给制冷技术以巨大推动。

基础研究方面:计算机仿真制冷循环始于1960年。

如今,普冷和低温领域中的各种循环,如:焦-汤节流制冷循环(J-T循环)、斯特林制冷循环、维勒米尔循环(VM循环)、吉福特-麦克马洪循环(G-M循环)、索尔文循环(SV循环)、逆向布雷顿循环、脉管式循环、吸收式制冷循环、热电制冷循环;利用声制冷、光制冷、化学方法制冷的各种循环;以及各种新型的混合型循环,如:热声斯特林发动机驱动小型脉管制冷机的循环均广泛应用计算机仿真技术于循环研究。

研究制冷系统的热物理过程、系统及部件的稳态和瞬态特性以及单一工质和混合工质的性质等等,也离不开微电子和计算机技术的应用。

在制冷产品的设计制造上:计算机现已广泛用于产品的辅助设计和制造(CAD,CAM)。

例如:结构零件设计的有限元法和有限差分法以及用计算机控制精密机械加工。

计算机和微处理器对制冷技术的最大影响在于高级自动控制系统的开发。

这是一项综合技术,涉及到先进的控制方法、可靠的集成块芯片及专门的控制模块、精良的传感器。

当前制冷系统采用电脑控制已极为普遍,控制模式正在发生变化,由简单的机械式控制发展到综合控制,为提高产品性能作出贡献。

(2)新材料在制冷产品上的应用

陶瓷及陶瓷复合物(如熔融石英、稳定氧化锆、硼化钛、氧化硅等)具有一系列优良性质:比钢轻、强度和韧性好、耐磨、导热系数小、表面光洁度高。

将陶瓷用烧结法渗入溶胶体制成零件或用作零件的表面涂釉,可改善零件的性能。

聚合材料(工程塑料、合成橡胶和复合材料)用于制冷产品中作为电绝缘材料、减振件

和软管材料;利用聚合材料的热塑性,以新工艺通过热定型的方法制造压缩机中的复杂零件(转子、阀片等)。

这些新材料的应用,带来产品性能、寿命的提高和成本的降低。

(3)机器、设备的发展

为满足各种用冷的需要,新产品不断推出,商品化程度不断提高。

压缩机以高效、可靠、低振动、低噪声、结构简单、成本低为追求目标,由往复式向回转式发展。

如新型螺杆式压缩机、涡旋式压缩机、摆线式压缩机等,都具有优良特性和竞争力。

在压缩机的驱动装置上,将变频器用于空调、热泵及集中式制冷系统的变速驱动,带来了节能效果。

在低温机器和设备方面,前述各种低温循环虽早已提出,但近年来生产开发的产品在温度,制冷量、启动速度、可靠性、能耗、体积等方面均有长足的进步。

现在,氦液化器多数为膨胀型,中型的为双膨胀机组成的柯林斯机器,大型的采用透平膨胀机。

辐射制冷、固态制冷已经实际应用。

利用3He-4He混合稀释制冷原理的低温制冷机已经商品化,可作为磁制冷机的预冷设备。

各种气体分离设备,热交换器,低温恒温器也在高效、紧凑、可靠等方面取得很大的进展。

(4)工质

继氟里昂和共沸混合工质之后,由于1970年石油危机,节能意识提到重要地位,在开发新工质上引人注目地研究出一系列非共沸工质,收到了节能的效果和满足一些特定需要。

由于臭氧耗损和温室效应引起了严峻的环境保护问题,导致了80年代末开始全球禁止CFCs物质,进而波及到HCFC类物质,这既是一次历史性的冲击,同时又提供了新的发展机遇。

近年来在替代工质开发及其热物理性质研究方面取得的成就即是证明。

当工质处于很低温度时,其量子特性变得十分重要,必须考虑其量子效应,此时循环的性能系数和制冷量不同于经典表达式,而需要通过对量子热力循环的研究得出。

制冷和低温技术是充满勃勃生机的学科和工业领域。

巨大的市场增长潜力和新技术的交叉渗透为它开辟了广阔的发展天地。

=====================================================

制冷与空调的发展史

bbs.xzbaojia/viewthread.php?tid=9335

在二十世纪六,七十年代,美国地区发生罕见的干旱天气,为解决干旱缺水地区的空调冷热源问题,美国率先研制出风冷式冷水机,用空气散热代替冷却塔,其英文名称是:Air cool Chiller,简称为Chiller!

在空调历史中,美国已经发展和改进了有风管的中央单元式系统,并得到了正在现场安装和修理有风管的单元式空调系统的空调设备分销商和经销商的强力支持。

WRAC是最简单和最便宜的系统,能够很容易的在零售商店中购得,并在持续高温来的时候自己安装。

同时,无风管的SRAC和SPAC自70年代起在有别于美国市场的动力下在日本得到发展和改进。

之后,设备设计和制造技术在90年代被转让到中国,这是通过与当地公司(包括主要元件如压缩机、热交换器、电劝机、精细阀和电子控制器的本地制造商)组成的合资公司进行的。

在90年代中国也从其它先进国家吸收了较大型空调设备的先进高新技术,并与多数是美国的大公司组成合资企业。

现今,中国已是一个顶级国家,她的当地主要工厂和合资企业制造了大量SRAC和SPAC以满足增长的国内市场和出口需要。

日本过去几年在把SRAC和SPAC机组出口到中国、欧洲和中东以建立新的市场。

但是中国现今已是最大的空调出口国,在2001年出口的WRAC,SRAC和SPAC机组总数达500万台,2002年预计有750或800万台机组出口,而日本正在失去出口的地位。

按国家进行回顾:

++++美国

美国是最大的空调市场,占世界总空调设备销售额的28%,大多数是有风管的单元式空调系统。

但是,热泵比例相对的低,在2001年以数量计占20%而以销售额计‘占30%。

美国空调市场与其它国家的差别,一些明显的原因是:

大多数人居住在位于有广阔空间的郊区独立房屋内,可以更方便地为整个室内空间的舒适优先选择安装风管。

能源价格相对要低,全国范围有电力和燃气可以供应,在冬季可以通过天然气管路网络用燃气炉取暖。

大部分陆地在冬季的寒冷天气并不适用没有辅助电加热的热泵,而辅助电加热是不经济的。

强大工业分销商和经济商网络以相对低的安装费用和维修后缓支持推销有风管的中央空调系统。

++++日本

住宅空调是从60年代由本地生产或从美国进口的WRAC开始的,基于人们大多数在生活区居住而只对单个房间的空调有强烈要求,一般不采用中央系统以节省很昂贵的电力费用。

但是,许多人抱怨高的运转噪声和振动不能为卧室所接受。

同时在房间内安装也不大方便。

在经过了WRAC痛苦的经历之后,后来发展了SRAC以便在室内挂壁安装,使房间空调机组运转安静并便于安装。

在功能上,虽然SRAC丧失了诸如新鲜空气的进入和回风的排出等功能,但WRAC和SRAC对单个房间的空调在有人占用时几乎是相同的。

在买方市场上了需要额外的小型SRAC机组,其特点是具有较低的噪声并可以在卧室中方便地安装为“添加机组”。

热泵型式在制冷和采暖季节都能很好地为人们所接受。

一些特点诸如较低的噪声、更足够的制热量、较低的功率消耗(也即较高的效率)以及较小的机组尺寸或改进的室内空气分布吸引了用户的注意力和兴趣。

由于能源费用比电力来得便宜和在较低环境温度时有较高制热量,煤油炉仍然广泛在屋内用以加热空间。

但是,SRAC热泵用于卧室对许多人来说是必不可少的,它可以安全运行且防止火灾,因为在睡眠时间室内温度低的时候房间空间是相当的好。

生活方式从门窗大开以便在睡眠时间有新鲜空气吸入转变到为了市区安全而用锁紧装置将门窗关闭,这就需要在屋内购买更多的SRAC机组。

在室内也安装强制通风机以吸入新鲜的室外空气和排出室内空气,藉使用热交换元件而达到节能的目的。

80年代介入的突破性技术解决了热泵的固有缺点并推动了SRAC机组的销售。

在打折扣的商店里,如同包括发送和安装主费用在内的白色货物一样引发了价格大战。

SRAC的安装十分容易和快捷,在现场技术水平较低的人员在几小时内即可完成机组的安装,制冷剂管路和接线。

过去存在一些质量问题,如制冷剂泄漏、元件故障以及直接涉及到制造商的修理或分包修理单位的综合性故障。

现在随着产品可靠性的改进,售后的修理电话已大大减少。

但是,商业形式仍是一如既往,SRAC在通过折扣商店销售,费用较低,售后服务直接由制造商或其分包修理单位承担。

SPAC的销售与SRAC的轻型商业市场相似。

制造商更从事于所谓的“建筑物多台SPAC”系统的销售,与空调系统设计人员和机械承包商接触并与制造商一起保持较高的附加值。

1台压缩冷凝机组与多台室内机组联用的SPAC对于制冷剂管路安装在墙内的新建住宅正越来越普及。

*** 和公用事业公司(如电力和煤气)以及负责制订国家能源政策的单位正在补贴新的技术开发并用吸引人的 *** 计划来促进新的空调系统装置。

这些产品涉及商能效的热泵、GHP和直接燃气吸收式冷水机组。

打折扣的能源价格所带来的令人 *** 的好处使用户愿意以低得多的操作能源费用安装新的节能空调系统或者用它来技术改造。

这样,即使初始费用有所增加,投资回收也仍是很吸引人的。

===============================================

制冷的发展大事:

1820年--人造冰首次在实验室中制造出来

1824年--揭示吸收式制冷原理

1834年--人造冰的生产开始

1855年--制造出吸收式制冷装置

1890年--小块人造冰面市----机械制冰工业开始了

1910年--家用机械冰箱出现

1913年--制造出第一台手动家用冰箱

空调用制冷技术之几种新型技术

一到夏天就汗流浃背,热得不行,随着科技的进步,电扇已经逐步空调所取代。不可否认,炎热的夏天能有一阵凉风吹来是一件多么美好的事情,这就是科技给我们带来的便利,但是相信有不少人并不知道空调的几种新型制冷技术,对其原理更是知之甚少。那么下面小编就为大家简单介绍一下目前空调用制冷技术的几种新型技术及其制冷原理。

一、太阳能制冷原理

主要有吸收式、吸附式、冷管式、除湿式、喷射式和光伏等制冷类型。

(1)太阳能吸收式制冷:用太阳能集热器收集太阳能来驱动吸收式制冷系统,利用储存液态冷剂的相变潜热来储存能量,利用其在低压低温下气化而制冷,目前为止示范应用最多的太阳能空调方式。多为溴化锂—水系统,也有的采用氨—水系统。

(2)太阳能吸附式制冷:将收式制冷相结合的一种蒸发制冷,以太阳能为热源,采用的工质对通常为活性碳—甲醇、分子筛—水、硅胶—水及氯化钙一氨等,可利用太阳能集热器将吸附床加热后用于脱附制冷剂,通过加热脱附——冷凝——吸附——蒸发等几个环节实现制冷。

(3)太阳能除湿空调系统:是一种开放循环的吸附式制冷系统。基本特征是干燥剂除湿和蒸发冷却,也是一种适合于利用太阳能的空调系统。

(4)太阳能喷射式制冷:通过太阳能集热器加热使低沸点工质变为高压蒸汽,通过喷管时因流出速度高、压力低,在吸入室周围吸引蒸发器内生成的低压蒸汽进入混合室,同时制冷剂任蒸发器中汽化而达到制冷效果。

(5)太阳能冷管制冷:这是一种间歇式制冷,主要结构是由太阳能冷管、集热箱、制冷箱、蓄冷器和冷却水回路等组成,是一种特殊的吸附式制冷系统

(6)太阳能半导体制冷:该系统由太阳能光电转换器(太阳能电池)、数控匹配器、储能设备(蓄电池)和半导体制冷装置四部分组成。太阳能光电转换器输出直流电,一部分直接供给半导体制冷装置进行制冷运行,另一部分则进入储能设备储存,以供阴天或晚上使用,保证系统可以全天候正常运行。

二、余热制冷原理

汽车预热制冷技术有喷射式,吸收式,混合式等方式。

吸收式制冷技术:余热驱动吸收式制冷装置以溴化锂水溶液为工质,各换热器独立安装于车厢底板下且位于同一平面内,利用特殊设计的连接管道连接形成密闭回路,合理利用车上的有限空间,解决现有汽车发动机余热驱动吸收式制冷设备因体积和重量过于庞大而无法应用于车辆上的问题。

喷射式制冷:由蒸汽喷射器、蒸发器和冷凝器(即凝汽器)等设备组成,依靠蒸汽喷射器的抽吸作用在蒸发器中保持一定的真空,使水在其中蒸发而制冷。

三、磁制冷基本原理

磁制冷(又称磁卡效应,Magneto-CaloricEffect)即利用磁热效应制冷。磁制冷工质在等温磁化时向外界放出热量,而绝热去磁时从外界吸收热量。对与铁磁性材料,磁热效应在其居里温度(磁有序-无序转变的温度)附近最为显著,当作用有外磁场时,该材料的磁熵值降低并放热;反之当去除外磁场时,材料的磁熵值升高并吸热。

当然目前存在的空调用制冷技术并不是只有这么几种,还有热声制冷、地热制冷、激光制冷等多种制冷技术。这些新型制冷技术的发展将会逐渐取代氟利昂类制冷剂,这对于保护地球的臭氧层、改善温室效应、节约能源有着非常重要的意义。因此,这些新型技术的研究和开发具有着十分重要的战略意义。好了,小编的介绍就到这里了,希望对您有所帮助。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【;wb】,就能免费领取哦~

制冷技术的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于制冷技术课后题答案、制冷技术的信息别忘了在本站进行查找喔。