德必信生活网

您现在的位置是:首页 > 杂文随笔 > 正文

杂文随笔

gamma函数(gamma函数积分)

阿信2023-03-30杂文随笔97

本篇文章给大家谈谈gamma函数,以及gamma函数积分对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

数学嘎嘛函数是什么?

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。!!!可以用来快速计算同伽马函数形式相类似的积分。函数形式可以百度百科看,套进去就好。

gamma函数

gamma函数是阶乘函数对非整数值的扩展的概括,由瑞士数学家莱昂哈德·欧拉在 18 世纪提出。

对于一个正整数N, 阶乘定义为  n ! = 1 × 2 × 3 ×⋯× ( n  − 1) ×  n . 举例来说, 5! = 1 × 2 × 3 × 4 × 5 = 120. 但是这个公式对于不是整数的n毫无意义。

为了把阶乘扩展到任意大于零的实数,gamma函数被定义为

使用积分技术, 可以证明Γ(1) = 1. 使用分部积分,可以得出gamma函数有以下的递归的特性:if  x   0, then Γ( x  + 1) =  x Γ( x ),由此可知, Γ(2) = 1 Γ(1) = 1; Γ(3) = 2 Γ(2) = 2 × 1 = 2!; Γ(4) = 3 Γ(3) = 3 × 2 × 1 = 3!; 等等。通常,如果 x 是自然数 (1, 2, 3,...),则 Γ(x) = (x − 1)!只要实部大于或等于 1,该函数就可以扩展到负的非整数实数和复数。 虽然 gamma 函数的行为类似于自然数(离散集)的阶乘,但其扩展到正实数(连续集)可用于对涉及连续变化的情况进行建模,对微积分、微分方程、复数分析和统计有重要应用。

伽玛(Gamma)函数怎么求?

Γ(2)伽玛函数公式:Γ(x)=积分:e^(-t)*t^(x-1)dt。

利用伽马函数γ(n)=(n-1)γ(n-1)=(n-1)!及γ(1/2)=√π,有γ(1/2+n)=γ[(n-1+1/2)+1]=[(2n-1)/2]γ(n-1/2)。

=[(2n-1)/2]][(2n-3)/2](1/2)γ(1/2)。

=[(2n-1)(2n-3)^(1)/2^n]γ(1/2)。

=[√π/2^n](2n-1)!!。“(2n-1)!!”表示自然数中连续奇数的连乘积。

Stirling公式

Gamma函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、魏尔斯特拉斯、刘维尔等等。这个函数在现代数学分析中被深入研究,在概率论中也是无处不在,很多统计分布都和这个函数相关。

Gamma函数作为阶乘的推广,首先它也有和Stirling公式类似的一个结论:即当x取的数越大,Gamma函数就越趋向于Stirling公式,所以当x足够大时,可以用Stirling公式来计算Gamma函数值。

伽玛函数是什么?

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11

表达式:

Γ(a)=∫{0积到无穷大}

[x^(a-1)]*[e^(-x)]dx

在Matlab中的应用

其表示N在N-1到0范围内的整数阶乘。

公式为:gamma(N)=(N-1)*(N-2)*...*2*1

例如:

gamma(6)=5*4*3*2*1

ans=120

以上内容参考:百度百科-伽玛函数

gamma函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于gamma函数积分、gamma函数的信息别忘了在本站进行查找喔。