德必信生活网

您现在的位置是:首页 > 杂文随笔 > 正文

杂文随笔

速算(速算扣除数2520怎么得来的)

阿信2023-03-31杂文随笔91

本篇文章给大家谈谈速算,以及速算扣除数2520怎么得来的对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

口算速算的方法

1.速算之凑整先算。

【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502

【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300

2.速算之带符号搬家。

【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455

【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?

3.速算之拆数凑整。

【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989

【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】:

原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400

例:73.15×9.9

【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】:

原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185

4.速算之等值变化。

【点拨】:等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。

例:1234-798

【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.

【解答】:原式==1234-800+2=436。

5.速算之去括号法。

【点拨】:在加减混合运算中,括号前面是“加号或乘号”,则去括号时,括号里的运算符号不变;如果括号前面是“减号或除号”,则去括号时,括号里的运算符号都要改变。

例题:(4.8×7.5×8.1)÷(2.4×2.5×2.7)

【分析】:首先根据“去括号原则”把括号去掉,然后根据“在同级运算中每个数可带着它前边的符号‘搬家’”进行简算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7

=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)

=2×3×3

=18

6.速算之同尾先减。

【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。

【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256

7.速算之提取公因数

【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。

速算技巧

一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?

这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:积个位上的

数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十

位数字的积。例如:

12X14=168 1=1X1 6=2+4 8=2X4

如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。

~例如:

14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1

试着做做看下面的题:

12X15=? 11X13=? 15X18=? 17X19=?

二、几十一乘以几十一的速算方法

例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81=

这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位

和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到

几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的

和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十

位数的和的个位数,最后写一个1 就一定正确。

我们来看两个算式:

21×61=

41×91=

用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。

第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281。

第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731。

试试上面题目吧!然后再看看下面几题

61×91= 81×81= 31×71= 51×41=

三、10-20的两位数乘法及乘方速算

方法:尾数相乘,被乘数加上乘数的尾数(满十进位)

【例1】 1 2

X 1 3

----------

1 5 6

(1)尾数相乘2X3=6

(2)被乘数加上乘数的尾数12+3=15

(3)把两计算结果相连即为所求结果

【例2】 1 5

X 1 5

------------

2 2 5

(1)尾数相乘5X5=25(满十进位)

(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22

(3)把两计算结果相连即为所求结果

四、两位数、三位数乘法及乘方速算

a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘

【例1】 5 4

X 5 6

---------

3 0 2 4

(1)尾数相乘4X6=24直接写在十位和个位上

(2)首数5加上1为6,两首数相乘6X5=30

(3)把两结果相连即为所求结果

【例2】 7 5

X 7 5

----------

5 6 2 5

(1)尾数相乘5X5=25直接写在十位和个位上

(2)首数7加上1为8,两首数相乘8X7=56

(3)把两计算结果相连即可

b.尾数是5的三位数乘方速算

方法:尾数相乘,十位数加一,再将两首数相乘

【例】 1 2 5

X 1 2 5

------------

1 5 6 2 5

(1)尾数相乘5X5=25直接写在十位和个位上

(2)首数12加上1为13,再两数相乘13X12=156

(3)两计算结果相连

c.任意两位数乘法

方法:尾数相乘,对角相乘再相加,首数相乘

【例】 3 7

X

X 6 2

---------

2 2 9 4

(1)尾数相乘7X2=14(满十进位)

(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)

(3)首数相乘3X6=18加上十位进上的4为18+4=22

(4)把计算结果相连即为所求结果

b.任意两位数及三位平方速算

方法:尾数的平方,首数乘尾数扩大2倍,首数的平方

[例] 2 3

X 2 3

---------

5 2 9

(1)尾数的平方3X3=9(满十进位)

(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)

(3)首数的平方2X2=4加上十位进上的1为5

(4)把计算结果相连即为所求结果

c.三位数的平方与两位数的平方速算方法相同

[例] 1 3 2

X 1 3 2

------------

1 7 4 2 4

(1)尾数的平方2X2=4写在个位

(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)

(3)首数的平方13X13=169加上十位进上的5为174

(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗

五、大数的平方速算

方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),

再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4

X 9 4

-----------

8 8 3 6

(1)94与100相差为6

(2)差数6的平方36写在个位和十位上

(3)用94减去差数6为88写在百位和千位上

(4)把计算结果相连即为所求结果

55 × 55 = ? 27 × 23 = ? 91 × 99 = ?

43 × 47 = ? 88 × 82 = ? 74 × 76 = ?

大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?

我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;

很神气吧!

速算秘诀:(就以第一题为例好啦)

(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。[5×(5+1)]=30;

(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了。5×5=25;

(3)3025!Bingo!其它依次类推就行了。

仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的。这样的速算秘诀只能

够适用于这种情况的算式。所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何

数都能算的。

六、关于9的数学速算技巧(两位数乘法)

关于9的口诀:

1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36

5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72

9 × 9 = 81

从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。

你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;

4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9

下面我们再做一些复杂一点的乘法:

18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?

54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?

关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。

这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?

我们先把上面这些数变一变。

18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;

45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;

72 = 7 × 10 + 2;81 = 8 × 10 + 1;

我们再把上面的数变一变

1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9

当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀

27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9

54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9

81 = 9 × 9

为了找到计算上面问题的方法,我们把上面的式子再变一次。

18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)

45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)

72 = 8×(10-1);81 = 9×(10-1)

现在我们来算上面的问题:

18 × 12 = 2×(10-1)× 12

= 2 ×(12 ×10 - 12)

= 2 ×(120- 12)

120 - 12 = 108;

这样就有了

18 × 12 = 2 × 108 = 216

是不是把一个两位数的乘法变成了一位数的乘法?

而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自

己会算了。

上面我们的计算好象很麻烦,其实现在总结一下就简单了。

看下一个题目:

27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)

= 3 × 108 = 324

36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)

= 4 × 108 = 432

发现什么规律没有?下面的题目好象不用算了,都是把前面的数加1再乘108

45 × 12 = 5 × 108 = 540

54 × 12 = 6 × 108 = 648

63 × 12 = 7 × 108 = 756

72 × 12 = 8 × 108 = 864

81 × 12 = 9 × 108 = 972

我们再看看上面的计算结果,发现什么了吗?

我们把一个两位数乘法变成了一位数的乘法。其中一个乘数的个位和十位的和等于9,这样变化以后的

数中一位数的那个乘数,都是正好比前面的乘数大1。

而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。

能不能找到一种更简便的计算方法呢?

为了找到一种更简便的算法。我在这里引入一个新的名词——补数。

什么是补数呢?

1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;

6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;

从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。

也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个

就行了。

现在我们再看看上面的计算结果:

拿一个 63 × 12 = 7 × 108 = 756 举例吧

结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1?

6 + 1 = 7

结果的后两位怎么算出来的呢?如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么?

7 × 8 = 56

呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这

个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。

这样行吗?如果行的话,那可真是太快了,真的是速算了。

试一试其他的题:

18 × 12 =

第一个乘数(18)的前面的数加1:1 + 1 =2 ——结果最前面的数

拿2去乘第二个乘数(12)的后面的数(2)的补数(8):2×8=16

结果就是 216。看一看上面对吗?

27 × 12 =

结果最前面的数——2 + 1 =3

结果最后面的数——3 ×8 = 24

结果 324

36 × 12 =

小学速算技巧

任意三位数平方的速算方法,如:126×126。

速算方法:将个位数与个位数相乘,得6×6=36,将6写在最终答案的个位数上,向十位进3;将百位和十位上的数与个位上的数相乘再扩大两倍,即12×6=72,再乘以2得144,将4写在最终答案的十位数上,加上前面的进位3,最终答案的十位数上的数字为7,向百位数进位14;将百位数和十位数上的数字进行平方,即12×12=144,加上进位14,得158,连起来就是126×126=15876.

如:524×524=52×52…52x4x2…4×4=(25…20…4)…416…16=2704…(416+1)…6=274576.

423×423=42×42…42x3x2…3×3=(16…16…4)…252…9=1764…252…9=178929.

个位数是5的三位数平方速算方法,如:115×115。

速算方法:将个位数前面的数11加1,得12乘以个位数前面的数字11,即12×11=132;将个位与个位相乘得出的数(这个数肯定都是25)写在最终答案的十位和个位上;连起来就是115×115=13225.

如:435×435=(43×44)…25=(16…28…12)…25=189225.

如:755×755=(75×76)…25=(49…77…30)…25=570025.

任意两位数与两位数相乘的速算方法,如:21×32.

速算方法:将两个十位数上的数字相乘,写在最终答案的百位数上,即2×3=6;将两个两位数的个位与十位交叉相乘然后再相加写在最终答案的十位数上,即2×2+1×3=7;将两个个位数上的数字相乘得到的答案写在最终答案的个位数上,即1×2=2;连起来就是21×32=672.

如:12×31=1×3…(1×1)+(2×3)…2×1=3…7…2=372.

13×23=1×2…(1×3)+(3×2)…3×3=299.

这里要注意:如果写在最终答案个位和十位数上的数大于9的话要向前面进位。

如:37×49=3×4…(3×9)+(7×4)…7×9=12…55…63=12…(55+6)…3=(12+6)…1…3=1813.

35×82=3×8…(3×2)+(5×8)…5×2=24…46…10=2870.

九十几与九十几相乘的速算方法,如:98×93。

速算方法:将100减去其中一个减数,即100-98=2,再用另一个减数减去得到的数,即93-2=91;将100分别减去两个减数,得到的两个数再相乘,即(100-98)x(100-93)=14;连起来就是98×93=9114。

如:97×92=97-(100-92)…(100-97)x(100-92)=97-8…3×8=8924.

96×95=91…20=9120.

这里要注意,如果第二步中100分别减去减数再相乘得到的数一位数,那么要在前面加0.

如:98×97=98-3…2×3=95…06=9506.

99×94=93…6=9306.

两位数中互补数与叠数相乘的速算方法,首先要讲讲什么是互补数和叠数。

互补数,相信前面的文章中都有提到,就是两个数相加成整十、整百、整千。如:7和3是互补数、48和52是互补数、127和873是互补数。

叠数,就更好理解了,就是个位、十位、百位都一样的数。如66、555、222等都是叠数。

下面就来讲讲两位数中互补数与叠数相乘的速算方法,如:73×66。

速算方法:将互补数中的十位数加上数字1然后再乘以叠数中的个位数,即(7+1)x6=48;将两个个位数上的数字相乘,即3×6=18;连起来就是73×66=4818.

如:82×77=(8+1)x7…2×7=63…14=6314.

64×99=63…36=6336.

这里要注意,如果两个个位数上的数字相乘得到的数是个位数的话,要在前面加个0.

如:64×22=(6+1)x2…4×2=14…8=14…08=1408.

91×33=30…3=3003.

十位数为0的两个三位数相乘的速算方法,如:302×407。

速算方法:第一步将两个百位数上的数字相乘,即3×4=12;第二步将百位数与个位数交叉相乘然后再相加,即3×7+2×4=29;第三步将个位与个位相乘,即2×7=14;连起来就是302×407=122914.

如:506×803=(5×8)…(5×3)+(6×8)…6×3=40…63…18=406318.

403×207=8…34…21=83421.

这里要注意,如果第一步和第二步得到的数是一位数,那么要在前面加个0。

如:402×201=(4×2)…(4×1)+(2×2)…2×1=8…8…2=8…08…02=80802.

如:302×102=3…8…4=30804.

这里还要注意就是如果第二步得到的数是三位数,那么就要向前面进位。

如:908×508=(9×5)…(9×8)+(8×5)…(8×8)=45…112…64=(45+1)…12…54=461254.

因此,只要碰到十位数是0的两个三位数相乘都可以用上面的这个速算方法,比传统方法算会快很多,而且也不容易出错。

十位数是1的两位数相乘的速算方法

十几与十几相乘的速算方法,如:13×12。

速算方法:将两个十位数上的数字相乘写在最终答案的百位数上,即1×1=1;将两个个位数上的数字相加写在最终答案的十位数上,即3+2=5;将两个个位数上的数字相乘写在最终答案的个位数上,即3×2=6;连起来就是13×12=156。

如:17×11=(1×1)…(7+1)…(7×1)=1…8…7=187.

14×12=1…6…8=168.

这里要注意,无论是两个个位数相加还是相乘,得到的数大于9都要向前进位。

如:16×18=(1×1)…(6+8)…(6×8)=1…14…48=(1+1)…(4+4)…8=288.

17×19=1…16…63=3…2…3=323.

《个位数互补、十位数相同的两个两位数相乘速算方法》

也就是个位数相同、十位数互补的两位数相乘的速算方法,如:48×68。

速算方法:将两个十位数上的数字相乘,即4×6=24,再加上个位数上的数字即24+8=32;然后将两个个位数上的数字相乘,即8×8=64;连起来就是48×68=3264.

如:27×87=(2×8+7)…7×7=23…49=2349.

39×79=(3×7+9)…9×9=30…81=3081.

这里要注意,如果两个个位数上的数字相乘得到的是一位数,那么要在前面加个0.

如:72×32=(7×3+2)…2×2=23…4=23…04=2304.

83×23=(8×2+3)…3×3=19…9=1909.

个位数是1的两位数相乘的速算方法,如:41×21。

速算方法:将十位数上的数字与十位数上的数字相乘写在最终答案的百位数上,即4×2=8;将十位数上的数字与十位数上的数字相加写在最终答案的十位数上,即4+2=6;将个位数上的数字与个位数上的数字相乘写在最终答案的个位数上,即1×1=1;连起来就是41×21=861.

如:51×31=(5×3)…(5+3)…(1×1)=15…8…1=1581.

这里要注意,如果第二步十位数上的数字与十位数上的数字相加大于9,就要向百位进1.

如:71×51=(7×5)…(7+5)…(1×1)=35…12…1=(35+1)…2…1=3621.

因此,以后只要碰到个位数为1的两个两位数相乘就可以用这个办法,只需要计算个位数与个位数的相乘和十以内的加法,就可以既快又准确的算出答案。

互补数就是两个数字相加等于10、100、1000等的数字,在这里的速算方法中,提到的互补数位数都是相同的,也就是两位与两位互补,三位与三位互补。

两个互补数相减的速算方法,如:73-27。

速算方法:将减数减去50再乘以2即为最终答案,也就是说将减数73-50=23,在乘以2,得46即为最终答案。

如:81-19=(81-50)x2=31×2=62。

63-37=(63-50)x2=26。

一个减数减去50,然后再乘以2是不是很好算?也不容易出错?比用传统方法在稿纸上运算是不是快很多了?

这里是两位数互补数相减,那么互补的三位数相减呢?也是一样的,只是将减去50变成减去500。

如:852-148=(852-500)x2=252×2=504。

746-254=(746-500)x2=492。

四位数也一样的变法,将50变成5000。

如:8426-1574=(8426-5000)x2=6852。

只要记住两点,一、这两数位数相同,二、这两数互补,那么都可以用这速算方法。

11这个数字在两位数中算是比较特殊的

如:11×26。方法是非常简单的。

首先,将与11相乘的任意两位数从中间分开,原十位数变为百位数,个位数还是个位数,然后将这任意两位数个位与十位相加放在中间。

如:11×26=2…(2+6)…6=2…8…6=286。

11×45=4…(4+5)…5=495。

是不是很简单?

这里还要注意如果这个任意两位数个位数与十位数相加大于9就要向百位进1。

如:11×68=6…(6+8)…8=6…14…8=(6+1)…4…8=748。

11×57=5…(5+7)…7=5…12…7=627。

个位数比十位数大1乘以9的速算方法

如:45×9。将代表个位数5的左手小拇指弯下来,弯下来的手指左边剩4根手指记做4,弯下来的手指记做0,弯下来的手指右边剩5根手指记做5,合起来就是405,也就是45×9=405。

67×9。将代表个位数7的右手无名指弯下来,弯下来的手指左边剩6根手指记做6,弯下来的手指记做0,弯下来的手指右边剩3根手指记做3,合起来就是603,也

求加法心算速算口诀或技巧

加法速算技巧

1、不进位的加法算式:(一定要先看清楚进不进位)

加法速算技巧

A:两位数加一位数:先写上十位数,再接着写上个位数的和。

B两位数加两位数:先写十位数的和,再写个位数的和

C多位数加多位数:从高位起,依次写上相同位上的数的和

2、 进位加法算式(一定要观察是否进位)

加法速算技巧 进位加法的关键是向高一位进1,进1既然已经是一定的事情,可不可以先进1呢?观察好后可以从高位先算起。

A两位数加一位数:先写上十位数加1的和,再接着写个位数的和的个位数(用二十以内加法口诀)

B两位数加一位数:先写上两位数凑成整十后的十位数,再写上一位数分出一个数后剩余的数。(即把一位数分开,帮两位数凑十)

加法速算技巧15+8=过程:15+5=20先写2,8分出5后剩余3,再接着写3。

扩展资料:

加法是完全一致的事物也就是同类事物的重复或累计,是数字运算的开始,不同类比如一个苹果+一个橘子其结果只能等于二个水果就存在分类与归类的关系。

减法是加法的逆运算;乘法是加法的特殊形式;除法是乘法的逆运算;乘方是乘法的简便形式;开方是乘方的逆运算;对数是在乘方的各项中寻找规律;由对数而发展出导数;然后是微分和积分。数字运算的发展,是更特殊的情况,更高度重复下的规律。

有许多二进制操作可以被视为对实数的加法运算的概括。抽象代数领域集中关注这种广义的运算,它们也出现在集合理论和类别理论中。

抽象代数中的加法

矢量加法:

在线性代数中,向量空间是一个代数结构,允许添加任何两个向量和缩放向量。一个熟悉的向量空间是所有有序的实数对的集合;有序对(a,b)被解释为从欧几里德平面中的原点到平面中的点(a,b)的向量。通过添加它们各自的坐标来获得两个向量的和:

这种加法是经典力学的核心,其中向量被解释为力。

矩阵加法:

为相同大小的两个矩阵定义矩阵加法。由A+B表示的两个m×n(发音为“m乘n”)的矩阵A和B的和是通过相加元素而计算的矩阵,例如:

集合理论和类别理论中的加法

增加自然数的方法是在集合理论中添加序数和基数。这些给出了两个不同的概括,即自然数。与大多数加法操作不同,序数的加法是不可交换的。然而,增加基数是与不相交联合操作密切相关的交换操作。

在类别理论中,不相交加法被视为特殊情况,一般可能是所有加法概括中最为抽象的。如直接总和和楔子总和,被命名为添加的联系。

求速算技巧?

高中数学合集百度网盘下载

链接:

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

速算的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于速算扣除数2520怎么得来的、速算的信息别忘了在本站进行查找喔。