德必信生活网

您现在的位置是:首页 > 生活资讯 > 正文

生活资讯

量子理论(量子理论的基本原理)

阿信2023-04-01生活资讯63

今天给各位分享量子理论的知识,其中也会对量子理论的基本原理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

量子理论是什么?

量子理论是当今人们研究微观世界的理论,也有人称为研究量子现象的物理学。

量子概念是1900年普朗克首先提出的,到今天已经一百一十多年了。期间,经过玻尔、德布罗意、玻恩、海森柏、薛定谔、狄拉克、爱因斯坦等许多物理大师的创新努力,到20世纪30年代,初步建立了一套完整的量子力学理论。

我们把科学家们在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象称为量子现象。

量子世界除了其线度极其微小之外10^-10~10^-15m量级,另一个主要特征是它们所涉及的许多宏观世界所对应的物理量往往不能取连续变化的值,如:坐标、动量、能量、角动量、自旋,甚至取值不确定。许多实验事实表明,量子世界满足的物理规律不再是经典的牛顿力学,而是量子物理学。

量子物理学是当今人们研究微观世界的理论,也有人称为研究量子现象的物理学。

量子理论有哪些基本假设?

三大假设如下:

第一,轨道定则:假设电子只能在一些特定的轨道上运动,而且在这样的轨道上运动时电子不向外辐射能量,因而解决了原子的稳定问题(按照经典电磁理论,电子绕原子核做变速运动,会向外辐射电磁波,致使电子向原子核靠近,最后导致原子结构的破坏)

第二,跃迁定则:在上述轨道运动时,如果电子从一个轨道跃迁到另一个轨道,就要相应吸收或放出相应的能量。这个定则很好的解释了原子光谱问题。

第三,角动量定则:电子绕核运动的角动量,必须是普朗克常量的整数倍。这个定则用于判定哪些轨道是允许的。

综上所述,波尔理论的三大假设,已经初步显示出量子的威力,不过还带有明显的经典物理色彩,比如轨道的概念,无论如何,这三个假设已经向我们展示出了微观世界不连续的特征。

量子理论的主要内容是什么?

量子论是现代物理学的两大基石之一。量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。

量子理论是谁提出来的?

量子理论是普朗克提出来的。

1900年,德国柏林大学教授普朗克首先提出了“量子论”。 1900年12月14日,普朗克在柏林的物理学会上发表了题为《论正常光谱的能量分布定律的理论》的论文,提出了著名的普朗克公式,这一天被普遍地认为是量子物理学诞生的日子。

马克斯·普朗克(1858年-1947)在1900年首先形成了他的量子论。这一理论如同5年后爱因斯坦发表的相对论一样,对物理学产生了深远的影响。

量子力学要点

基本描述:波函数。系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。

粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图像,而采纳一种模糊的概率图像,这也是量子力学的核心。

量子力学基本理论

一、哥本哈根量子力学诠释

量子力学是研究微观粒子的运动状态和运动规律,微观粒子电子、中子、质子,夸克和量子一样都是量子力学的研究范畴,但是实体粒子和量子是不同的,实体粒子有质量,而量子是能量子,它是没有静止质量的。量子力学是在20世纪初由玻尔、海森堡、薛定谔、泡利、普朗克等物理学家建立的,他们组成了哥本哈根学派,哥本哈根诠释是目前对量子力学本质的正统解释。爱因斯坦的光子理论学说推动和发展了量子力学。哥本哈根对量子力学的诠释,就是认为微观粒子在微观空间中的运动状态是不确定的,运动状态可以用波函数来描述,薛定谔方程的波函数Ψ(x、y、z、t),可以计算粒子在微观空间的分布概率。泡利量子理论的原子轨道就是波函数的描述行为,通过薛定谔方程计算得到原子核外电子的原子轨道和原子轨道量子数。原子核外电子在空间分布状态是不确定的,电子单缝衍射,相同的电子通过狭缝射在屏幕上,随着电子数目的增多,电子以不同的概率分布呈现出明暗条纹,这些都说明了粒子在微观空间中呈概率分布的,电子在某时刻它的运动状态是不确定的。

在爱因斯坦看来,波函数概率描述电子的轨道并不是电子真实的运动情况,电子的运动状态是精确的,准确的,用概率描述自然现象只是人在研究微观粒子的过程中采用的一种不得已的手段。哥本哈根学派总是用概率粗略的描述一群电子的运动规律,而不能准确地描述单个电子真实的运动规律,这只能说明量子力学是不完备的,真正完备的量子力学肯定可以描述单个电子精确的运动规律。爱因斯坦反对哥本哈根诠释中的不确定原理,所以他说上帝不会掷骰子。他对电子的概率分布理论不满,爱因斯坦认为核外电子在某个时刻的位置和速度都是可以准确测定的,只是没有找到准确测定的方法和完整的底层理论。

二、薛定谔方程

量子力学是研究微观粒子的状态和运动的规律,薛定谔方程是描述微观粒子运动状态的基本方程。微观粒子在空间某时刻的位置是不确定的,是随机的,薛定谔方程的波函数就是用来描述电子在空间的分布概率,薛定谔方程表达式。

薛定谔方程波函数ψ(x、y、z、t),粒子势能函数V(x、y、z、t)都是时间和位置的函数,h普朗克常数,i虚数单位,m粒子质量。

波函数ψ模的平方表示粒子在t时刻在某位置出现的概率,也就是粒子的概率密度,而波函数Ψ本身是概率的平方根,是一个非物理量,本身没有物理意义,只是描述粒子在空间分布的概率波动。薛定谔方程,描述了微观世界粒子的运动状态和运动规律,牛顿定律描述了宏观世界物体的运动状态和运动规律。薛定萼方程可以计算原子核外电子的分布概率,计算电子层的原子轨道和原子轨道的量子数。

三、薛定谔的猫

薛定谔猫的实验是将一只猫关在一个箱子里,箱子里有一个瓶子装有氰化钾,还有一个瓶子装有放射性镭,镭原子核衰变存在几率,如果镭发生衰变,就会释放出中子触发机关,打碎装有氰化物的瓶子,这样一来猫就会死,如果镭不衰变就不会释放出中子,装有氰化物的瓶子就不会碎,猫就能活。在箱子门没有打开前,猫可能死也可能活概率为50%,处于生死的叠加态,当门打开后这种叠加态就坍塌成一种确定的状态。用薛定谔的猫比喻微观粒子状态,在没有测量以前粒子的位置是不确定的,可能在不同的位置,粒子状态处于叠加态,当被测量后,量子的位置就被确定了,也就是说粒子的叠加态坍塌成一种确定状态。

薛定谔的猫,常用来形容不确定的事物,比喻一种事件,在没有确定之前,可能是A也可能是B,处于AB的叠加态,当经过验证后,叠加态就能坍塌成一种确定的事件。

四、泡利原理

泡利不相容原理是原子物理和分子物理的基本理论,也是量子力学的重要基础,泡利的量子理论是研究原子核外电子的分布规律及电子层的复杂结构。通过薛定谔方程波函数ψ(x、y、z、t)求解和统计,得到了原子轨道和原子轨道四个量子数,薛定谔方程对于简单系统,如氢原子中电子的状态薛定谔方程能准确求解,对于复杂系统,如z个电子的原子,由于电子受屏蔽效应相互作用势能会发生改变,所以只能近似求解。原子轨道和轨道量子数就是薛定谔方程的近似解。原子轨道的四个量子数决定了电子的运动状态,其中n(主量子数),决定了电子能级;l(角量子数),决定了亚层轨道的形状和电子的角动量,电子运动的角动量和电子的角量子数有关,M= l(l+1)*(h/2π) ,l=0,1,2,……。l 越大,角动量越大,能量越大。m(磁量子数),表示亚层的原子轨道,决定了原子轨道在空间的伸展方向;ms自旋量子数,表示原子轨道两个电子的自旋方向。四个量子数决定了电子的能量、轨道形状、伸展方向和电子自旋方向,也就是说决定了电子在空间中的状态。泡利原理可表述在原子内不可能有两个或两个以上的电子具有完全相同的4个量子数,或者说在量子数m,l,n相同情况下,一个原子轨道上最多可容纳两个电子,而这两个电子的自旋方向必须相反。

泡利不相容原理揭示了原子复杂的电子层结构,非常方便地解释不同原子之间化学键的结合机理和相互作用的原理。元素的化学性质与原子结构最外层的电子数有关,不同的元素如果最外层的电子的数量相同,则所表现出的性质相似,周期表就是依据这些原理编制出来的。

五、海森堡的测不准原理

测量粒子在微观空间某时刻的位置和速度,我们通过仪器发射一定频率的光子来测量,当光子去照射电子,光子和电子发生干扰作用,假如你先测量电子的位置,由于光子对电子的作用,这时它的运动速度就发生了变化,所以你在测量位置的同时,测量的速度肯定有很大的误差,并且光子的频率越大,测量位置就会越准确,而测量的速度就越不准确;反过来你先测量速度,同样会对位置产生很大的影响。海森堡测不准原理 x p h/4π(p动量),意思是测量的位置和动量误差乘积是个确定的常数,说明不能同时准确测量电子的速度和位置,当速度测量误差越小,位置测量的误差就越大;位置测量误差越小,速度测量误差就越大。这就是海森堡测不准原理。测不准原理不是仪器精度的问题,也不是方法问题,而是在仪器测量时光子对测定粒子有干扰作用。

六、爱因斯坦的光子理论

光子理论由爱因斯坦提出(建立在普朗克能量子的概念上),爱因斯坦的量子理论推动了量子力学的发展。量子就是能量子,光子就是量子,量子和实体粒子不同,量子没有静止质量,实体粒子如电子、质子、中子、夸克等有静止质量,光子的能量E hν(ν为频率,h为普朗克常量),光子的能量E=mc²(m是光子的运动质量),结合E=hν,可以得到光子的动量p=mc=hν/c。光子是组成光的最小能量单位。这些就是爱因斯坦的光子理论。

当物质受到光的照射时,如果光子的能量满足原子的能级差hv E₂-E₁,原子就会吸收这个光子,电子从能级E₁跳跃到能级E₂轨道上处于激发态,激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回到低能级E₁上,并将电子跃迁时所吸收的能量以光子的形式释放出去。当原子吸收的光子能量大于电子的逸出功,电子就会发生电离产生光电流。这就是爱因斯坦的光电理论。

量子理论的基本思想是什么?

量子理论的基本思想就是这么简洁。能量是以各含“多少”能量的粒子或粒子束的形式来传导。用一个通俗生动的比喻即能量不是水管里流出来的持续水流,而是从机关枪里射出的子弹,每一个子弹里包含若干小粒。

1900年12月14日,普朗克向柏林物理学会阐明了辐射公式。量子论正式诞生。仍然如原来提出的原子学说一样,普朗克将最小的不可分的能量块称为“量子”,也就是“能量子”。多少年来,在经典物理学的观念里“自然界是不会跳跃”的,自然现象是连续的。这是力学、热学和电磁场等都证实了的基本规律,微积分正是基于这种连续性思想的数学方法。

1918年,普朗克获得了诺贝尔物理学奖,他在领奖大会上谈到:“如果作用量子仅仅是个虚构的量,那么辐射定律的全部推论在原则上也就是幻觉,仅仅是毫无内容的公式游戏。与此相反,假若辐射定律的推导是建立在真实的物理思想基础上的,那么作用量子必然要在物理学中起重大作用。作用量子的出现宣告了前所未闻的崭新事物,自从莱布尼茨和牛顿创立微积分以来,我们的物理思考便建立在一切因果关系都是连续的假设上,看来新事物要彻底改造我们的物理思考了。”

尽管实验证明了普朗克理论的很多预言,但是这个奇特的思想仍然得不到公认。因为普朗克对于给定颜色的光波,是用每秒钟的振动次数(频率)乘以普朗克常数来计算能量的,人们认为他“用一个不可理解的假设——光波由振动产生,‘解释’了一个无法理解的现象。”

量子假说与人们几百年来的观念不符,连普朗克本人也在一片反对声中没敢向前走,甚至放弃了继续深入运用量子理论。

他曾经致力于将量子(作用量子)纳入古典物理学范围,但是毫无成效。

普朗克后来回忆说:“我想以某种方式把作用量子纳入古典理论的徒劳工作占去了好几年时间,耗费了我许多劳动。某些专业同行把它当作一种悲剧。我对此持不同意见,因为我认为通过这类彻底澄清而得到的收获是更为宝贵的。现在我了解到作用量子在物理学中所起的作用比我原先所设想的要大得多,从而充分理解到在处理原子问题时采用全新的观察和计算方法的必要性。”

爱因斯坦在1905年的论文中就有一篇是以普朗克的理论为基础的,后来沿着他们的思路和角度,出现的是量子力学一个又一个辉煌的名字:波尔、德布罗意、海森堡、薛定谔、狄拉克。

尽管作为先驱者的普朗克由于动摇而没能用充足时间深入研究,而爱因斯坦坚持自己的理念最终远离了热闹的量子力学,甚至成为量子力学的反对者,但是从相对论到量子力学一个又一个的观念被打破,一个又一个的迷惑随解随生,量子论也日益呈现了巨大的理论价值和迷趣。

关于量子理论和量子理论的基本原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。